
Package Review as a Part of Free and Open Source Software Compliance 39

Package Review as a Part of Free and Open
Source Software Compliance

Martin von Willebranda, Mikko-Pekka Partanenb
(a) Attorney, Partner, HH Partners, Attorneys-at-law, Ltd;

Chairman, Validos ry; (b) Attorney, HH Partners, Attorneys-
at-law, Ltd; Open Source Specialist, Validos ry.

DOI: 10.5033/ifosslr.v2i1.37

Abstract
Free and open source software (“FOSS”) package review is an
essential part of license compliance when businesses take into use
FOSS. This article discusses the practical process of package review
and the legal questions that arise and conclusions that can be made.
Furthermore this article presents the process and a number of legal
conclusions applied by Validos ry, an association for performing
package review and sharing its results. The purpose of presenting a
particular process is to share and improve the applied methodology
with a long-term vision of unifying the expectations for package
review and license appraisal, thus contributing to the ease of taking
into use of FOSS by businesses.

Keywords
Law; Information Technology; Copyright; Licensing; Free and Open
Source Software; Compliance; Sharing

Info
This item is part of the Articles section of IFOSS L. Rev. For more
information, please consult the relevant section policies statement.
This article has been independently peer-reviewed.

1. Introduction

Free and open source software compliance processes aim to enable compliant use of Free and
Open Source Software (“FOSS”) packages. This article addresses a part of the FOSS compliance
process from a perspective of a company and also, to some extent, by a group of companies. The
part addressed is package review. In order to achieve compliant use of FOSS, the package review
process must identify and record the correct package, identify and record all applicable licenses
and their obligations and to some extent copyright holders, identify eventual license

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://www.ifosslr.org/ifosslr/about/editorialPolicies#sectionPolicies
http://dx.doi.org/10.5033/ifosslr.v2i1.37

40 Package Review as a Part of Free and Open Source Software Compliance

incompatibilities and report all of this information in a manner that allows compliant use – even
correction of incompliances – in the needed use scenarios. This article's viewpoint to these
objectives, is the process through which the objectives can be achieved: the process to identify a
package (section 2), the process to inspect such package and its licensing (section 3), the legal
conclusions used in appraisal of licensing (section 4), reporting and storing or even sharing the
results of the review (section 5) and suggesting corrective measures for non-compliant packages
(section 6).

Open source compliance is a wider question to which the package review process belongs. For
both a strategical and organizational view on open source compliance, an overview with practical
examples is presented by Richard Kemp in his article Towards Free/Libre Open Source Software
(“FLOSS”) Governance in the Organisation.1

1.1. Purpose of this Article

The writers of this article perform compliance work for Validos,2 an association established for
performing compliance review work and sharing the results between all participating companies.
The compliance review reports created by Validos are stored in a joint and growing database in a
manner that enables reuse by all member organisations,3

The purpose of this article is not only scholar, but also practical. This article presents package
compliance review processes used by Validos4 for the purpose of sharing information and also
opening up a documented compliance process for criticism and therefore improvement. With
criticism and improvement suggestions, this article can be developed into a robust and practical
guide on legal package review in open source compliance. We invite all readers to participate into
such development.

This article is provided with a CC-BY-SA license that allows derivatives of the article. Thus,
elements of this article may be used in creation of individual compliance review instructions.

1.2. Scope and limitations of the Article

A package, as used herein, means typically a single identifiable file that is offered for download by

1 KEMP, R.. Towards Free/Libre Open Source Software (“FLOSS”) Governance in the Organisation. International Free
and Open Source Software Law Review, North America, 1, dec. 2009. Available at:
http://www.ifosslr.org/ifosslr/article/view/19/51. DOI: 10.5033/ifosslr.v1i2.19.

2 Validos ry (http://www.validos.org) is an association based in Finland with 12 member companies representing a
turnover of over EUR 1 Billion.

3 Validos shares all reports on open source packages between all members. The basic logic is that each member
participates on at least a certain level (depending on the member revenue) and that the results of all of the work is
shared via an extranet. An important element in Validos is that the review process and the reporting has been geared to
support reuse in different use scenarios – at the same time this means that members still have need for member-specific
decisions on, e.g., linking questions in relation to member's proprietary software. The Validos database grows via the
requests for review by members. Currently the database holds reports on more than 200 FOSS packages, and
approximately 4 new packages are added per week. The reuse rate of new review requests varies between 0 - 75 %,
meaning that at best 75 % of the packages in a review requests can be obtained from the database with no new work
required.

4 However, even if most of the process description reflect Validos processes, this is not an exact description as the
process is continuously developed and also member preferences affect the compliance work of individual packages.

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://www.validos.org/
http://dx.doi.org/10.5033/ifosslr.v1i2.19
http://www.ifosslr.org/ifosslr/article/view/19/51

Package Review as a Part of Free and Open Source Software Compliance 41

an open source project. A package may come in tar.gz, zip or other compressed format.5 As a
compressed format, a package may include any number of files and subdirectories, as determined
by the project offering such download.

Package review is not limited to pure FOSS packages. This is due to practical reasons: packages
tend to contain files or subdirectories or other elements that are not open source, according to
definitions by the The Open Source Initiative (OSI) or the Free Software Foundation.6 Although
some files may not be pure FOSS, their use might anyhow be relatively unrestricted from a
corporate perspective, and therefore, their use is often controlled by the same process as the use of
FOSS. From a company’s perspective the compliance process can be similar or same regarding all
software packages that can be obtained without charge from internet sources, such as FOSS, public
domain software or freeware.

An open source project can be either a group of individuals, a separate legal entity or a part of the
activity of an existing company, or even a mixture of these. In this article, we use the term “open
source project” to describe these. We refrain from analysing eventual differences resulting from
the type organization of the project. However, compliance review is done in relation to the
copyright holder and eventual license grant by the copyright holder.

Package compliance review results in information that is generic and may be used by many
companies and may also result in information that is specific to a use case, and as such may not be
used as well by others. Since the generic review results are useful to many, its creation can be done
in a collaborative fashion. However, reuse by many poses requirements on the review process.
One perspective in this article is satisfying such requirements and enabling sharing of the generic
elements of review results. Also, this article concentrates on the generic elements of the review
process and not on the specific questions, such as linking with member-specific software.

This article aims not to discuss eventual risks in non-compliant use of FOSS packages: it aims to
discuss a part of the process for ensuring compliant use of FOSS packages. Further, we do not
intend to thoroughly or orderly discuss methods of analysing and assessing risks in relation to use
of FOSS packages or licensing uncertainties, although some parts of the article touch risk
appraising questions.

This article only discusses use of FOSS packages by companies in relation to redistribution of the
FOSS package by the company, and not other use scenarios (such as use for a commercial service
or internal use). The boundaries of redistribution are not discussed. This article does not discuss
possible liability questions in collaborative production of compliance information.

We have refrained from analysing compliance review questions from a perspective of any single
jurisdiction. Traditional legal sources do not address the practical questions of package compliance
review: at least we have not found such information from any jurisdiction. At the same time, the
companies need to apply the review results in multiple jurisdictions in a unified manner or at least
with only small variations. In defining the legal conclusions we present here, we have assumed

5 For example Unix source code of Apache http server version 2.2.15 is distributed in package httpd-2.2.15.tar.gz.
6 The definition of open source by the Open Source Initiative: http://www.opensource.org/docs/osd (retrieved on 4 May

2010) and the definition of free software by the Free Software Foundation: http://www.gnu.org/philosophy/free-
sw.html (retrieved on 4 May 2010).

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org/docs/osd

42 Package Review as a Part of Free and Open Source Software Compliance

that the general principles of copyright and norms in interpretation of licensing or similar texts, are
similar in most jurisdictions. To the extent this is not so in relation to the legal conclusions we
present, we would be delighted to be corrected. The writers of this article are Finnish lawyers and
thus come from a European continental, and more specifically Nordic, background.

1.3. Methodology

From a perspective of legal methodology, what is the value of publicising a package review
custom, even a developing one? We have noted that current legal literature does not much address
very practical questions that need to be addressed in package review. Also, we see it highly
improbable that such legal conclusions that we have come into would be determined by an
authoritative source, such as a court, any time soon. Taken into account the amount of jurisdictions
and the amount of different conclusions, this is evident. Thus, in lack of a way to establish a
correct package review methodology by investigating traditional legal sources, we have decided to
strive for the development of a consensus by the legal community interested in FOSS and thereby
also the wider legal community engaged with open source projects. If such a consensus would be
established, the practical risk of non-compliance would be lower, since if a company adhered to
the consensus, the probability that a right holder in an open source project would require a
company to interpret licensing differently, would be lower.

1.4. Introduction Validos FOSS Review Process and the Legal Conclusions Used Therein

The Validos process returns a compliance value for a package which is quite simple: a package is
found to be (i) compliant or valid, (ii) possibly incompliant or (iii) incompliant /containing clear
risks.7 Compliant means that the licensing of a package was found clear and no incompatibilities
within the package were found. Evaluation against the redistribution license of the member is out
of scope (a member-specific question that is not part of a generic compliance process: that
information has little value for reuse in other use situations). In addition, one outcome of the
process is the use instructions for redistributing the package and other reports (section 5) and
possibilities to correct found possible or clear non-compliances (section 6).

FOSS packages are often licensed in ways that are not clear or unambiguous. The process
described in this article has been used within Validos on more than 200 packages containing
thousands of sub-packages. Of those packages 65% have been found fully compliant in accordance
with the process.8

This percentage includes a set of legal conclusions applied: we have deemed that certain typical
situations are considered compliant, as long as defined criteria are fulfilled and contrary

7 In Validos, each package receives a value “Compliant”, “Possible Incompliance”, “Clear Incompliance” for every
standard use case (redistribution, commercial service, development tool and internal use). This is viewable as one line
information. We also use a marker to signify that decisions are required (e.g., a GPL-licensed package can be fully
compliant but will anyhow require a decision regarding linking by the user of the package). The first level report will
then offer a risk pointer with short explanation of the reason for the given value, i.e., “Why was this package tagged
with Possible Incompliance?” and will also detail the files and folders affected. The second level report expands the
first level report with all the details of the review process.

8 The percentage does not reflect the gravity of the non-compliance: a single file in a 25,000 file package may create a
(possible) non-compliant tag: it is the purpose of the use instructions to reflect the gravity and point to the risk in
question. It can also be very easy to correct a non-compliance.

International Free and Open Source Software Law Review Vol. 2, Issue 1

Package Review as a Part of Free and Open Source Software Compliance 43

indications are not found. The legal conclusions applied are presented and discussed in section 4.

Legal conclusions could be also made on an in-casu basis. However, due to the frequent
occurrence of most of the situations meant in the conclusions, we assert that most companies
would do well to form a policy on these questions. Leaving every question to be individually
appraised by an open source review board will not result in better compliance decisions, but rather
ineffective working methods and unnecessary variation.

It is to be noted that the approach described aims to enable companies to utilize free and open
source software. Instead of an approach to enable companies to use open source software, a
company could adopt a very risk averse approach, and not, e.g., use any files which do not contain
a clear license header due to perceived licensing ambiguities. This would lead into non-use or a
very limited use of open source packages by such company. Thus, we acknowledge that not every
company may be willing to accept these conclusions as a basis for their compliance work.

A number of questions will still need to be answered separately from the conclusions described in
this article. Typically these questions are submitted to an open source review board, or similar ad-
hoc formation including an engineer, a process controller and an open source knowledgeable
lawyer. These situations include:

1. Situations in which the legal conclusions do not apply, e.g., when the process finds a or
possibly incompliant package; and

2. use-case specific decisions, such as questions on interaction with proprietary software (e.g.,
linking).

2. Identifying a Package

Objective: When a compliance review request is received the first compliance task is to identify
the package described in the request. Correct identification of the package ensures that the
compliance work is done for the correct package and that the information can be later reused by
others: others need to be able to match the reviewed package with the package they are planning to
use.

Description: Typically an open source project has different versions of the packages it offers,
available perhaps on different hosting sites, project pages or source code management systems.
This can lead to uncertainty regarding which is the right software package to review, especially in
situations where the review is performed by a specialised unit or it is performed much later than
the actual software has been taken into use by a company. To avoid such uncertainty and correctly
establish the package to be reviewed, the reviewers should note at least the following different
versions:

International Free and Open Source Software Law Review Vol. 2, Issue 1

44 Package Review as a Part of Free and Open Source Software Compliance

Different Versions /
Uncertainties

Comment

Wrong Project Sometimes another open source project may have a confusingly
similar name, or there might be an old, out-dated and no-longer used
web-page of the same project.

Sub-Projects An open source project may be divided into multiple sub-projects

Larger Packages v.
Smaller Packages

Packages may be offered in versions which include different
combinations of the software of the project or third party software. A
typical example is a version which includes all required dependencies
compared to a version with only code created by the project. Also,
sometimes projects provide versions which do not include certain code
(e.g., a patented cipher).

Platform Variation Packages may differ for different platforms (such as Debian, Red Hat,
Windows etc.)

Binary v. Source Packages may come in versions including only source code or only
binaries or both. Sometimes the source version is more encompassing
than the binary version (e.g., source is provided for all platforms) or
vica-versa (e.g., the source is only provided for the code created by the
project and dependencies are only in binary format).

Development Versions Finally, most projects have different development versions, e.g.,
versions running from 0.1 to 2.72. Development versions can also be
indicated with letters 1.0a etc.

Table 1: Possible uncertainties

Recommended process: Review requests should contain at least the project name, its web page and
the development version of the package. File name and URL of the package to be used might not
be sufficient, as the user might refer a binary only package and review should be performed on
source version or both the source and binary version. This is why the project name and the web
page of the project are always needed.

Review requests sometimes refer only binary packages: if this is the case, one critical element is to
find the source version matching the binary version. If matching is not clear and it cannot be
cleared with the unit requesting the review, the remaining option is to inspect source files and
compile the binary to be used from the reviewed source. In this case, only the source version is
reviewed.

In practical terms, the information in the review request will need to be assessed against the
information provided by the project, in order to establish the correct package to be inspected.
Possible discrepancies need to be solved with the company/unit/project requesting review of the
package. If request includes partial information, eventually completed information should be sent
back to the requesting unit for verification.

As a part of identifying the package, the inspected file should be stored and a unique signum for

International Free and Open Source Software Law Review Vol. 2, Issue 1

Package Review as a Part of Free and Open Source Software Compliance 45

the file should be created (such as an MD5-signum). At best, the unique signum is provided by the
project and that signum can be checked against the signum created for the stored file. If the
projects use a signum, the same signum type can be used for the stored file. In addition, the
preferred signum type should be created in any case so that the stored files have one unified
signum for each file.

3. Review of Package

3.1. Collect Information

Objective: After a package has been identified in accordance with the previous section, the actual
review of the package begins. The objective of the inspection of a package is to collect all
information that is relevant for the compliant use of the package and to analyse arising legal
questions.

Recommended process: The inspection starts with manual inspection of the web pages of the
project and the downloading of the identified package. The web pages are also inspected for
license information and any related material such as statements regarding known patent issues or
export restrictions. Occasionally additional copyright, license or author information needs to be
searched via search engines from other public sources such as related mailing lists. Found license
information is recorded for archival purposes by taking a screenshot or printing an electronic copy.

When the package is downloaded and archives extracted, the package is briefly inspected to form
an overview of the included folders, documents and libraries. Validos process also includes
uploading the package to FOSSology source code analysis software after the package has been
downloaded. FOSSology is an open source licensed tool that can be used to analyse source code.
At the time, the most useful feature of the software is its ability to find license text matches from
the source code of a package. This is done remarkably well as the software identifies reliably also
license fragments and modified license texts.9 We have found that the amount of licenses not
found is very low.10

There are also other source code analysis software tools, which can be used in open source
compliance processes.11 Sometimes it is necessary to use text search tools such as grep to find
and collect copyright and license notices from large code bases.

The practical review of Fossology results can be performed as follows:

1. .Overview of the Fossology Results. When Fossology has processed the uploaded software
package, it displays result of the check as a list of found matches. The results should be briefly
examined for the purpose of forming an overview of the included licenses and phrase matches.

9 For more information, see http://fossology.org.
10 The current road-map of FOSSology includes the reporting of copyright notices found in packages, to be released in

version 1.2, probably very soon. This feature will add to the review certainty, as unidentified licenses can be picked up
by their copyright notices.

11 Most known alternatives are different offerings by Black Duck, Palamida and OpenLogic. There is also another free
tool, OSLC – or Open Source License Checker (http://sourceforge.net/projects/oslc/, link retrieved 2 May 2010), which
is not much developed currently.

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://sourceforge.net/projects/oslc/
http://fossology.org/

46 Package Review as a Part of Free and Open Source Software Compliance

2. Review of Phrases. If Fossology finds suspicious text matches that do not correspond with any
known license text, it can point them out as phrases. As these findings can potentially refer to
proprietary type licenses or other restrictions, the matches need to be reviewed. This is done by
reviewing the preview view for the match “phrase”, or if necessary, by reviewing each file that
contains the spotted phrases.12

3. Review of License Text Matches. Fossology scans the uploaded file against license texts in its
knowledge base. However, the listing shows only textual matches and not legal matches: e.g., a
file with a dual license will probably be shown as a hit with two different licenses.. Manual
review of the results is therefore required with help of the interface provided by Fossology.
The findings should also be reviewed to check that the matches corresponds fully with the
stated licenses and eventual license modifications are found. Most projects luckily employ
similar statements so that each file does not need to be inspected separately.13

3.2 Analyse Collected Information

Objective: After collecting data from project web pages, documentation and source code it must be
analysed. The objective is to identify the level of clarity of licensing and eventual incompliances
and other issues.

Recommend process: At Validos, we review at least:

1) Main License Clarity

How strong and reliable is the information on the license applied by the project (we refer
to this license as the main license). According to our experience it is not always clear
what the main license is. Typically these situations are related to contradictory or
incomplete license statements in project web pages and downloadable packages.14

Sometimes these can be solved satisfactorily by finding a common nominator in the
package: (e.g., unclear references to GPL 2 and GPL 3 licenses on the webpage can be
solved, if the package thoroughly refers to “GPL 2 or later”). However, in many cases
solving in-clarity regarding a main license requires contacting the open source project or
the relevant author. If the reviewer needs to make a judgement on the license, the package
receives a “possible incompliance” tag from the review process.

2) Compliance of Existing Sub-Packages or Sub-Components

One review item is to find and list the existing sub-projects or third party projects and the

12 Preview view of Fossology displays a one or two row excerpt of found phrase, in many cases this is enough to
determine whether the found match is relevant in a licensing sense, or refers to non-compliant license. If a preview is
not enough to resolve whether or not there is really any issues, the files source code can be accessed from the tool
reviewed in detail.

13 For example the tool can show that inspected package contains 10 000 files with match “'GPL v2'-style “, while it is
not effective to check each of 10 000 match for unexpected modification, at least some source files should be
reviewed. Should any inconsistencies be found, the findings should be reviewed in detail. A feature that separates
different types of matches would make this process faster.

14 For example, situation where a project web page contains a statement ”Licensed under the GPL.” where word GPL
contains a link to Free Software Foundation’s GPL license page, which nowadays contains the version 3 of the license.
At the same time a download package can contain a statement “Licensed under the GPL v.2 only”.

International Free and Open Source Software Law Review Vol. 2, Issue 1

Package Review as a Part of Free and Open Source Software Compliance 47

applicable licenses (sub-licenses).

Typically FOSS packages include code created by others than the main copyright holder.
While code reuse is one of the driving forces of open source development, it is also a
common source of legal risks. This is caused by the sheer number of licenses (whether
open source or more limited licenses) that are not compatible with other licenses, which
combined with the fact that developers tend to be more interested of coding than
licensing, causes often situations where some included sub-licensed files or components
are not compatible with the main license.15 Therefore, one of the main tasks of a package
review process is to point-out any situations where all license requirements cannot be
fulfilled simultaneously when the software is distributed. Equally important is to find files
that may not be distributed at all, such as components licensed only for evaluation use.
License compatibility checks are done by reviewing stated license information and results
of source code analysis. If clearly or possibly incompliant licenses are found,
corresponding components are reported with necessary detail, usually at folder or file
level and the report summaries receive a corresponding value. Additionally, when
discrepancies have been found, corrective measures, which can be used to solve the issue
or mitigate risks caused by problem, can be suggested.

3) Other Elements such as Patent and Export Control Related Information

As a note, information that relates to patents or eventual export control related questions,
can also be collected.

Occasionally, license problems can be solved by contacting open source projects for clarifications.
We have found this approach to be welcomed by projects and in many cases projects correct or
clarify issues not only in their replies but also clarified the information provided by the project.
We see contacting of projects as a way of contributing back to free and open source projects. The
findings of the review process should always be recorded in a format enabling quality control,
sharing and reuse.

4. Legal Conclusions in Appraisal of Licensing

As we mentioned above, the Validos process returns a compliance value for a package which is
quite simple: a package is found to be (i) compliant or valid, (ii) possibly incompliant or (iii)
incompliant /caining clear risks. In addition, one outcome of the process is the use instructions for
redistributing the package (section 5 below) and possibilities to correct found possible or clear
non-compliances (section 6 below). However, FOSS packages are often licensed in ways that are
not clear or unambiguous.

15 In pure package review, as the one described in this article, the incompatibility is assessed within a package or a
combination of packages. The question of license compatibility in relation to proprietary or other software of the
member organisation is not a part of generic package review. That question becomes member-specific and cannot
therefore be shared with other members (the answer to a member-specific question also has little value to others, or
little value for reuse in general).

International Free and Open Source Software Law Review Vol. 2, Issue 1

48 Package Review as a Part of Free and Open Source Software Compliance

4.1. Files with No License Headers

Issue: Packages contain files with no license headers. Under which license should these files be
considered to be licensed?

Conclusion: Files with no license headers are considered to be licensed with the closest main
license, as long as there are no other indications. e.g., a library or folder within a package may
contain an open source license and 10 files of which the most important one contains a license
header and the rest do not have any license header. In this case all the other files are considered to
be licensed with the “main license” of that folder, unless there are contrary indications.

Typical Contrary Indications: A copyright notice by a third party that differs from the copyright
notice of the rest of the package and there is no indication of that party participating in the same
open source project. Statements on proprietary licensing, such as “Copyright ATT 1989.
Proprietary and unpublished”.

Discussion and arguments: This is the widest question in package review. Most of the packages
include files with no license headers. It can be envisaged that bigger projects will embrace detailed
policies and licensing practices which solves this question at the source,16 but the amount of
projects will continue to increase and this issue will persist. Companies taking into use FOSS
packages will need to resolve this question somehow. Small to medium size projects mostly do not
see this as a problem and in lack of a unified approach to offer to projects, companies will mostly
need to resort to policy decisions on this.

The conclusion we propose seems to offer a practical solution to this question. The weakness of
the argument is that the files do not contain any license headers and the conclusion seems
arbitrary. However, it must be noted that there is no widely accepted instruction or practice to
include a license notice in each file and one could also ask why not include a notice for each line
of code. A notice can equally be placed on the folder level, as it can be placed on a file or package
level. Furthermore, we are not aware of any legal obligation in Finland or elsewhere to include
license notices on a particular granularity, such as at a file level. We deem this conclusion to
reflect most authors' intent taken into account the practice in placing license notices. On the other
hand, contrary indications need to be reviewed (see above).

4.2. Modifications to Files

Issue: Files may at times contain notices that they have been modified by another party than the
original creator. In many of these cases, there is no license reference in relation to the
modification. However, the file may contain the original license notice or references of the original
author. Under what license should the modifications be considered to be done?

Legal Conclusion: Modifications to files are considered to be under the same license as the rest of
the file, unless otherwise is indicated.

Contrary Indications: In most cases, only a reference to a second license or a statement on other

16 Such as the SPDX initiative hosted by Fossbazaar, a working group of the Linux Foundation
(https://fossbazaar.org/content/fossbazaar-face-face-meeting-lf-collaboration-summit, retrieved on 4 May 2010)

International Free and Open Source Software Law Review Vol. 2, Issue 1

https://fossbazaar.org/content/fossbazaar-face-face-meeting-lf-collaboration-summit

Package Review as a Part of Free and Open Source Software Compliance 49

type of license (such as a statement referring to proprietary type of licensing) is a contrary
indication.

Discussion and Arguments: Since the author of the modifications has not expressly stated a
license, it can be asked how is his intent to license the modifications expressed. When reviewing
individual files this question may be affected also by how the statement of modifications is
formulated and how it is placed in the file, in relation to the existing license reference. Possibilities
include placing the modification statement and eventual copyright notice before or after the
existing license notice, to include it into the existing license notice or to state it as a comment later
on in the file. However, in each of these cases, we conclude that the intent of the author is
expressed by the fact that he did not add another notice or reference to another notice. In fact, this
same argument applies even if the file does not contain notice of its own, but rather a main license
is applied (see legal conclusion on Files with No License Headers).

4.3. Licenses Do Not Automatically Change or Automatically Attach

Issue: Many times an open source package that includes GPL licensed files includes also files with
other licenses such as MIT and BSD. The GPL license (both in version 2 and 3) requires that a
whole is licensed under the GPL license. E.g., MIT-licensed files are considered GPL compliant
since it is possible to fulfil both the requirements of the MIT license and the GPL license, at the
same time. However, the practice with open source packages is that licenses are not changed or
added onto each other, in the file headers. This means that a MIT licensed file within a GPL
package continues to contain only the reference to MIT license, and open source projects and their
redistributors, do not add GPL license references to these MIT licensed files. The question is
whether the license of the MIT-licensed file has changed into MIT+GPL due to the inclusion of
the MIT file to the package containing GPL-files. This question has relevance e.g., in cases where
a company wishes to use only the MIT-licensed files and wishes to remove the GPL-files. Are the
files still licensed with just MIT or should they be treated to be licensed with both MIT and GPL?
Does the license change automatically from MIT to MIT+GPL? Or in case the package contains
internal incompatibilities, such as Mozilla Public License files and GPL-files forming a whole in
copyleft sense: can such incompatibility be rectified by removing the GPL-files?

Conclusion: Files are considered licensed with the information contained in the file, to the extent
there is no information to the contrary. The existence a GPL-file in the same package is not
contrary information. Licenses of files are considered not to have changed (or not to change
automatically) when the whole package is licensed with another license or contains files licensed
with another package, even if the license of the file would allow addition of new conditions or new
license.

Contrary Indications: Additions to license headers to support an imposed additional license by the
project or the redistributor.

Discussion and arguments: It would require interpretation to deem a file containing one clear
license statement to be considered licensed with the stated license and another license, in a
cumulative manner. However, in case a MIT-licensed file is contained within a GPL whole, it
could be argued that the GPL redistribution requirement (copyleft) implies that the MIT-licensed

International Free and Open Source Software Law Review Vol. 2, Issue 1

50 Package Review as a Part of Free and Open Source Software Compliance

file has been redistributed under the GPL and under the original MIT license (both licenses'
requirements applying to the same file on subsequent redistribution). This is not reflected in
practice in any way: we have not seen any license headers with license additions of this type.
However, even if relicensing MIT-files without the GPL addon, could theoretically be considered
to be incompliant relicensing of the GPL-parts, it is not very probable that the right holder of the
GPL-part would be interested in enforcing the GPL against this type of behaviour since there is
hardly any interest in doing so and this type or relicensing is very common. If the GPL-elements
are removed from such a package, we would deem it very strange, if the right holder of the GPL-
parts could thereafter exercise control over the relicensing terms of the elements that originally
were by another party and under another license. This argument applies regardless, if the elements
were licensed with a GPL compliant license, such as MIT or a GPL-incompliant license, such as
the MPL. Thus the conclusion is that GPL-elements can be removed from a package to allow e.g.,
linking with GPL-incompatible packages and also, as the conclusion is founded on licenses not
attaching automatically, also package incompatibilities can be fixed by removing elements that
cause incompatibilities, at least in cases where incompatibilities are caused by GPL licensed
elements.

4.4. Software Copyleft in Relation to Firmware

Issue: Firmware files are at times distributed together with non-firmware software with the
intention that the firmware files are run on a separate device and the software is intended for
running on a computer processor. May firmware files form a whole, in GPL sense, with software
intended to be run on a computer processor, outside of the device containing the firmware? Is there
a possible incompliance question in cases where GPL-software running on a computer processor
interacts with proprietary licensed firmware?

Conclusion: Firmware, which is intended to be placed on hardware, is separate from a software
intended to be run on a computer processor. As such it does not form a derivative of software
intended for running on a computer processor.

Contrary Indications: A clear statement by the right holder or licensor of the GPL-licensed
software. Even this indication does not cause a clear incompliance, but rather a possible
incompliance, since it can also be argued that an attempt by a GPL-licensor to control
redistribution of firmware elements, is not effective in a copyright sense.

Discussion and arguments: These series of instructions (firmware v. traditional software) are
distinctly separate. The question of firmware files containing mixed code (GPL and proprietary)
within the firmware is outside the scope of this legal conclusion.

4.5. Autoconf and Other Build Tools

Issue: Build or similar tools that are licensed with a GPL license are widely used and included in
open source packages. The question is whether the copyleft obligation contained in the GPL
license should be considered to form a whole (as meant in the GPL) with the rest of the files in the
same package. In most cases the rest of the files are also output of such tools, i.e., built with such
tools. This question applies to GNU libtools and GNU autoconf tools and Bison parser files

International Free and Open Source Software Law Review Vol. 2, Issue 1

Package Review as a Part of Free and Open Source Software Compliance 51

Conclusion: GNU libtools and GNU autoconf tools (and Bison parser files), when contained in
packages, are assumed to be used as build tools, unless there is indication to the contrary. GPL-
licensing of build tools is considered not to pose requirements to the license, as regards
distribution of the rest of the software built with those tools, even if the tools are contained in the
same package.

When a file contains the autoconf-exception.17 the exception is applied, if there exists, in the same
package, a file that states “generated by autoconf”18 (it is not necessary to check whether the file
actually is generated by autoconf, the statement is enough).

The Bison exception,19 if it exists, is applied if there are files that state “made by GNU Bison” and
the version of Bison 1.24 or higher. While the wording of the exception sometimes refers only to
“use”, it is concluded that it means to allow all exploitation rights granted by copyright (copying,
modification and publication).

Contrary Indications: Typical contrary indications are other GPL-licensed libraries included in the
package and the output of the build process. Also, if the software package would be build tool in
itself, then this would be a contrary indication.

Discussion and arguments: Build process can be considered legally as copying of the source code
and other elements into a slightly different format as object code and other code organised for
execution by a computer. Object code could be considered as modified version and as such a
derivative, but as it it a mechanical process that does not normally include human creativity, we
would consider the object code to be a copy of the source code. Similarly other parts copied in the
process are copies. A similar copy would be an analogue piece of music as a digitized copy.
Although the build tools may be and probably are works of authorship, the same applies to build
tools as any other computer software: output obtained by using them is not subject to the copyright
of the computer software (unless elements are directly copied, which is a contrary indication). In
some cases, the instructions given to the build tool could be considered creative, but this is similar
to other code given for the build tools for processing, such as the source code. Thus instructions,
and files containing instructions can be treated similarly as the source code. In the end, the build
tool's license does not affect the license of the code processed by the build tool.

4.6. Dual License

Issue: Many open source packages refer to “dual licensed” files or packages. Many times the
wording “dual licensed” is explained to mean that the licensee may choose either of the stated
licenses, but also others expressions exists, e.g., “dual licensed with MIT and GPL” or licensed
with “CDDL+GPL” with references to “dual license”.20 These latter could be interpreted to mean

17 For example: “# As a special exception to the GNU General Public License, if you distribute this file as part of a
program that contains a configuration script generated by Autoconf, you may include it under the same distribution
terms that you use for the rest of that program.”

18 For example, a file named “configure”, which contains text “# Guess values for system-dependent variables and create
Makefiles. Generated by Autoconf 2.52.”

19 For example, “ /* As a special exception, when this file is copied by Bison into a Bison output file, you may use that
output file without restriction. This special exception was added by the Free Software Foundation in version 1.24 of
Bison. */”

20 For example, see http://wiki.java.net/bin/view/Projects/GlassFishCodeDependencies (retrieved on 2 May 2010)

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://wiki.java.net/bin/view/Projects/GlassFishCodeDependencies

52 Package Review as a Part of Free and Open Source Software Compliance

that both of the licenses need to be applied. Sometimes several licenses are referred to with a
separation using the word “or”. How should not clear references to “dual license” be interpreted?

Conclusion: We conclude that the wording “dual license” or use of “or” means that the licensee
may choose between the licenses offered, unless there is contrary indications.

Contrary Indications: A contrary indication is an explanation of another type of licensing scheme
than a pure dual license where the licensee may choose the applicable license.

Discussion and arguments: The statement “dual license” is also sometimes used to refer to an
offering, where obtaining a second license requires payment of a license fee (e.g., a proprietary
like license with no copyleft obligations instead of a GPL license, in exchange for a license fee).
Except for this situation, we feel that every project using some kind of statement of “dual license”
means that the licensee may choose between the licenses. Sometimes the dual license choices are
also incompatible with each other, such as the Mozilla Public License and the GPL: in these cases,
the theoretical assumption of licensing with both licenses, would not be possible due to that the
requirements of these licenses cannot be simultaneously satisfied, and thus a project hardly would
require such a license scheme from its users.

4.7. Short License References

Issue: It is not uncommon that FOSS packages or files just refer a license, without containing the
actual license text. In these situations it is not necessarily clear what is the applicable license that
must be complied when the software is redistributed. E.g., many files refer to a MIT-license
without clear definition of the MIT-license. Which MIT-license should be applied? This issue does
not refer to ambiguity in license version numbers in cases where there are clear license texts and
license versions, but rather to licenses which are more varying (mostly MIT and BSD).

Conclusion: If the license text is not provided, the applicable version is that which is provided by
the project that has introduced the respective license. If there is no such project or organization, or
it is likely that such initial publisher is no longer maintaining the license, the source of the license
text is Open Source Initiative’s list of approved licenses. E.g., the MIT-license text, if not
otherwise indicated, means the MIT-license text approved by the OSI (www.opensource.org).

Contrary Indications: Any reference by the right holder or the project to another type of license.

Discussion and arguments: This is really a practical assumption, not necessarily a legal conclusion.
Still, it quite probably results in a license and license content accepted by the right holder. The
license contents in different MIT-license versions are, from a risk assessment perspective, quite
similar: all allow copying, modification and redistribution, so any risk would relate to lesser
obligations. A right holder requiring remedies based on application of a certain MIT-license not
specified by him, might also have difficulties in such claim. Of course, one could theoretically
argue that there is no license.

International Free and Open Source Software Law Review Vol. 2, Issue 1

Package Review as a Part of Free and Open Source Software Compliance 53

4.8. GPL and LGPL Version Incompleteness

Issue: Many times projects refer (at project pages, root of the package or source files), in an
incomplete manner to licenses and do not state the version of the license, or the information is
contradictory. Typically this occurs between GPL version 2 and 3 and LGPL versions 2/2.1 and 3.
Which license version should be applied? What if the project cannot be contacted and it is
inactive?

Conclusion: When there is incomplete information regarding a license’s version, a single point
(e.g., source file) defining the license version completely is enough, provided there is no
conflicting information. If the version is totally unspecified in every place, then the rule on all
LGPL and GPL license versions applies: user may choose the version of the given license. If there
is no single point that defines the license version, and the project web pages refer to
http://www.gnu.org/licenses/gpl.html and the date of the package is earlier than 29 June 2007 and
the project is inactive (does not reply to queries), then we consider GPL version 2 to be the correct
license.

Contrary Indications: In relation to a single point establishing a license version, any contradictory
reference to another version will create a possible risk.

Discussion and Arguments: Regarding references to http://www.gnu.org/licenses/gpl.html for
packages earlier than 29 June 2007, it could be said that the project might have earlier referred a
completely different license, but this is quite improbable. The best way to solve this question, is to
ask the project, but sometimes the project is inactive. Inactivity of the project supports that the
project has not intentionally changed its license.

4.9. Source Code as Documentation

Issue: Several licenses require provision of copyright, license and similar notices in the
documentation to the end-user. How can this be fulfilled in outbound licensing, i.e., what are the
exact requirements of the licenses of the packages to the redistributor? Is it enough that the notices
are provided in electronic form and can they be provided as a part of the source code? Is it enough
that just source code is provided to the licensee / end-user?

Conclusion: Provision of source code to the licensee / end-user fulfils the requirement to provide
the copyright, license and similar notices to the licensee / end-user.

Contrary Indications: Clear text to suggest different method of provisioning the notices.

Arguments and Discussion: Notices are contained in the source code. Typically provisioning of the
source code is considered as providing the end-user more than just the notices. Thus, if the
redistributor provides the end-user the source code containing the notices, the notices are provided
to the end-user. It can also be discussed, whether the source code, when delivered like this, is
documentation or not. Source code can also be considered as part of documentation, since it
provides detailed information on the functioning of the software, its authors and licensing. Also,
separate notice documents are not very useful and tend to become lengthy, uninformative
documents, and we are not sure whether the right holders wish such practices to be undertaken. As

International Free and Open Source Software Law Review Vol. 2, Issue 1

54 Package Review as a Part of Free and Open Source Software Compliance

an additional point, we have not seen any license requirement, which would require non-electronic
distribution of documentation.

5. Reporting, Storing and Sharing Review Results

Storage and sharing can be considered parts of reporting, since package reuse requires ability to
reuse results of earlier compliance reports. Review results should be stored also for quality control
purposes.

Thus, reports on review results have a number of requirements and objectives:

• Reports should be easy to use and (thus) enable compliant use of the package, to the extent
possible. The language used should be clear and concise, to enable professionals with different
educational background to review the reports.;

• Reports should enable risk assessment in cases packages were found possibly compliant /
possibly risky; or even risk assessment of packages found compliant, if a certain legal
conclusion was used (in case a user wishes not to accept such legal conclusion);

• Reports should enable variations in risk preferences for different use cases; and

• Reports should enable sharing (separation of generic and use-case specific information).

5.1. License Requirement Simplifications

The Validos process uses simplified license summaries to instruct the redistribution of FOSS
packages.

The advantage of this method is that the license requirements become easier to understand, more
standardised (same requirement in different licenses is expressed in only one way) and faster to
apply. The disadvantage is that the requirement might be applied in a wrong way, since the
wording has changed from the original license text. The process needs therefore to provide also the
information on the licenses applied, so that the user may read the licenses directly.

However, the writers of this article contend that license requirement simplifications result in a
better end result for compliance since full license texts can also be misunderstood. Also we further
contend that, even if an open source review board is used for each released project or product, not
using simplified license information will result in a non-effective and non-standardised working
way. In practice, the compliance officers and lawyers will memorise license requirement
simplifications or they will reread license documents. It would therefore be more standardised and
effective to use license requirement simplifications reduced to writing in an open source review
board too.

5.2. General Use Instructions and Package Specific Use Instructions

The Validos-process has introduced a general use instruction,21 with the objective to help

21 Link to http://www.validos.org/en/about-validos/37-validoksen-toimintatavat/66-general-use-instruction-for-open-

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://www.validos.org/en/about-validos/37-validoksen-toimintatavat/66-general-use-instruction-for-open-source-packages
http://www.validos.org/en/about-validos/37-validoksen-toimintatavat/66-general-use-instruction-for-open-source-packages

Package Review as a Part of Free and Open Source Software Compliance 55

instructing redistribution of individual packages. The general use instruction covers most frequent
requirements in FOSS-licenses. The general use instruction can be applied to all packages: it
reduces the length of package specific instructions and standardises the redistribution
methodology. Package specific instructions complement the general use instructions with
requirements that are not covered by the general use instructions.

The general use instruction of Validos, includes the following:

1. Keep all copyright notices, license references, license texts, notice-texts and warranty
disclaimers intact and redistribute these together with the package when you redistribute the
software package.

2. Do not use the name or any mark of (i) the software, (ii) the project, (iii) any author or (iv) any
copyright holder in any marketing, promotional or similar material or for such purposes, nor in
the name of your product or in any other such way.

3. When you modify an open source package and redistribute it as modified, you should always
mark your own modifications clearly added with the date of your change. This is typically
done by markings at the beginning of the relevant file.

4. When you distribute the open source package as binary, you should also preferably always
distribute the source code distribution of the original open source package together with the
binary and state in the binary that the original source is distributed together with the binary.

5. If item 4 is not possible (e.g., due to space restrictions) verify that all separate text files listed in
item 1 are contained in the binary distribution in a corresponding directory.

The general use instruction covers all the requirements in a number of frequent licenses (such as
MIT, BSD and Apache 1.1 with legal conclusion (4.9), Apache 2.0 except patents) and many of
the requirements of other licenses. The general use instruction standardises the compliance process
for all FOSS projects and makes the instructions for additional license requirements simpler.
Therefore a package specific report on a purely GPL 2 licensed package needs to cover only the
requirements that go beyond the general use instructions (i.e., copyleft requirement).

Even if many licenses do not require source code redistribution, the item 4 in the general use
instruction has been found as a useful way to standardise processes and to reduce work in
compiling license notices to separate documents. See also legal conclusion 4.9 on using source
code as a documentation.

5.3. Risk Preferences and Assessments

Compliance review will mostly find packages as compliant or possibly compliant. When a
package is possibly compliant, a risk assessment is required. Typically it is a question on legal
analysis: are these licenses compliant, when combined in this way? Or, is this file licensed with
license version 2 or version 3, when the license reference is ambiguous and indications to both
license versions exist? Do we need a patent license for a certain cipher even if we remove file x?

The above discussed questions can be solved by policy decisions or further review, such as by

source-packages (retrieved on 2010-04-29)

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://www.validos.org/en/about-validos/37-validoksen-toimintatavat/66-general-use-instruction-for-open-source-packages
http://www.validos.org/en/about-validos/37-validoksen-toimintatavat/66-general-use-instruction-for-open-source-packages

56 Package Review as a Part of Free and Open Source Software Compliance

contacting the open source project or research on cipher patents. These actions might still result in
not entirely clear answers. This is when risk assessments are required.

Different use cases might have different preferences for risks, costs and time. The preferences may
vary depending on the company or may vary depending on the unit within the company or even
within different projects within the same unit. The compliance review reports should separate
between information and risk assessment so that risk assessments can be done on a use-case
specific level. Validos process does this by not doing the risk assessment, just pointing to the risk
and explaining it. However, the legal conclusions we have discussed in section 4, can also be seen
as risk decisions, although they are very generic. The reports could also include information on
which legal conclusions were applied: this would enable policy decisions not to accept certain
legal conclusions.

Information that allows risk assessments is not necessarily simple and straightforward. Therefore it
might not be suitable for a simple and straightforward reporting of use instructions for FOSS
packages. We have addressed this concern by providing only high-level information on a higher
level with pointers to more detailed information. The Validos process provides a one-line report on
each package using colour coding for different typical use cases, and then, at certain colour
codings, a risk pointer in the package specific use instructions. The pointer includes general
information on an eventual risk and points to the full report describing the estimated risk in full.
The full report not only allows risk assessment, but also quality control.

5.4. Enabling of Sharing

Package compliance review results in information that is generic and may be used by many
companies and may also result in information that is specific to a use case, and as such may not be
used as well by others. Since the generic review results are useful to many, its creation can be done
in a collaborative fashion.

In order for sharing to become possible, two things must happen: 1) the collaborative production
of compliance review information must be more effective than production of the same information
by each company separately and 2) the information to be shared must not be confidential. The
requirement on effect includes that the information must be readily usable within the processes of
the user companies and their supply-chains (upstream and downstream). This in turn means that
addition of use-case specific information should be possible without sharing that information to
others.

The first requirement is fulfilled by the basic fact that there are many user companies of the same
open source packages. (E.g., if the Linux kernel is used as a basis of redistributed products and
projects by thousands of companies, then it is not effective for each of the companies to do the
compliance review separately, if a working joint way of doing the review exists. The same applies
each time a new version of the kernel is issued. Even if a joint compliance effort would need to be
much more robust, and therefore perhaps multiple times more costly to produce, still the cost per
company would be much lower than individual production of the compliance information by each
of the companies).

International Free and Open Source Software Law Review Vol. 2, Issue 1

Package Review as a Part of Free and Open Source Software Compliance 57

The key to enabling sharing of FOSS compliance review information is to limit the information to
generic information that can be obtained from the open source packages. Another important
elements is that the use-case specific information must be easy to add to the generic information.

6. Suggesting Corrective Actions for Found Incompliant Packages

It is not uncommon for FOSS packages to contain code that causes them to pose potential or clear
risks when redistributing them. However, the fundamental idea of free and open source software is
that code can be modified, and naturally modifications may be used also to fix legal “bugs”. In this
section we present some options how businesses can deal with packages that are not fully
compliant. This is an element that is included in Validos reports, since this is useful information
for sharing.

6.1. Removing Problematic Files

Removing problematic files, folders or components from the FOSS package may sometimes be the
most efficient method of removing specific legal risks from FOSS packages, caused by, e.g., code
which is licensed under incompatible licenses. However, practicality of removing parts needs to be
resolved by technical personnel, as incompliant code may be essential to needed functionality or
removing code might cause other undesired results such as need for extensive testing. The legal
conclusion we have presented above (4.6) discusses legal questions around this.

6.2. Replacing problematic files

Replacing problematic files, folders or components of the FOSS package is closely related to
removal of files. Occasionally it can be possible to replace incompliant parts with either compliant
versions of needed code or developing such code in-house. Again, practicality of the approach
must be evaluated in casu since it is dependent on availability of alternative replacements and or
amount and costs of developing new code in-house.

6.3. Obtaining Another License

If removal or replacing is not possible for some reason, one alternative which may sometimes
resolve incompliance is obtaining an alternative license (FOSS or otherwise) for a code which
may not be otherwise redistributable. This option may typically be practical in situations where a
FOSS package contains proprietary type software or there is a concern regarding linking copyleft
code with other software.

6.4. Accepting related risks

Quite often the legal situation of some FOSS package is subject to true uncertainty caused by
ambiguous license terms and lack of relevant case law. These are cases where different but well-
founded legal interpretations can be presented but still certainty cannot be reached. Typical issue
of this kind is combining and distributing code licensed under the GNU General Public License,

International Free and Open Source Software Law Review Vol. 2, Issue 1

58 Package Review as a Part of Free and Open Source Software Compliance

version 2 with software that is licensed under different terms. During the years countless number
of bytes has been twisted over the issue, but as to date no definite conclusion has been reached.22 If
the situation is subject to this kind of uncertainty, companies can – and very often will – decide on
an internal policy and therefore accept related risks.

6.5. Contacting Open Source Projects

Many times simple contacts to the project can solve risk questions. In working with Validos, we
have found most projects responsive and delighted of the contribution regarding licensing
questions. Sometimes contacting the authors can be a simple way to solve an uncertainty. In
relation to our work at Validos, we have not discussed with projects on their willingness to change
clear licensing into another type of licensing either for a single case or more generally, but in some
cases that could also be an option to consider.

6.6. Refrain from Redistribution

Sometimes none of the above options, or no other measures, are possible or desired. If non-
compliance cannot be solved, then the only available option is to refrain from redistributing certain
piece of software.

7. Conclusions

Traditional legal analysis, when applied to copyright law in multiple jurisdictions, FOSS
environment and package review would find many uncertainties and arguments pro and contra. In
this article we have strived to demonstrate another approach: the approach of creating (legal)
community consensus around a given methodology or around a set of legal conclusions and
thereby controlling risk and enabling and easing the use of FOSS in a business environment.
However, such community consensus is not created by one article, but we hope and envisage that
this article could help many in creation of their policies, encourage others to criticize and comment
the conclusions presented herein and thereby take a step forward in creation of a consensus by the
legal community interested in free and open source software.

About the authors

Martin von Willebrand

22 The GPL linking issue has been analysed in a number of publications, including Determann, Lothar (2006): 'Dangerous
Liasons--Software Combinations as Derivative Works? Distribution, Installation, and Execution of Linked Programs
Under Copyright Law, Commercial Licenses, and the GPL' Berkeley Technology Law Journal, Volume 21, issue 4.
http://www.btlj.org/data/articles/21_04_03.pdf Accessed on 4 May 2010. and Välimäki, Mikko (2005): 'GNU General
Public License and the Distribution of Derivative Works'. The Journal of Information, Law and Technology (JILT)
2005(1) http://www2.warwick.ac.uk/fac/soc/law2/elj/jilt/2005_1/välimäki/. Accessed on 4 May 2010. It is to be noted
that a working group of the European Legal Network within Free Software Foundation Europe is in process of
finishing a detailed document which examines legal and technical situations of combining GPL v.2 software with other
code.

International Free and Open Source Software Law Review Vol. 2, Issue 1

http://www2.warwick.ac.uk/fac/soc/law2/elj/jilt/2005_1/v%C3%A4lim%C3%A4ki/%3E
http://www.btlj.org/data/articles/21_04_03.pdf

Package Review as a Part of Free and Open Source Software Compliance 59

Martin von Willebrand is a partner at HH Partners, Attorneys-at-law, Ltd based in Helsinki,
Finland. He has introduced the idea of collaborative open source compliance and is currently the
chairman of Validos ry, a Finnish association founded for the purpose of easing the use of open
source software by businesses and other entities. He is a technology lawyer who has also
significant expertise on copyright matters, open source, and related litigation. His technology work
is recommended by practically all publications rating Finnish lawyers, such as BestLawyers,
Chambers Europe and Legal500.

Mikko-Pekka Partanen

Mikko-Pekka Partanen is an associate lawyer at HH Partners, Attorneys-at-law, Ltd based in
Helsinki, Finland. His main specialisation is copyright and open source and he has extensive
experience in legal compliance work relating to software development.

International Free and Open Source Software Law Review Vol. 2, Issue 1

60 Package Review as a Part of Free and Open Source Software Compliance

International Free and Open Source Software Law Review Vol. 2, Issue 1

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume X2, Issue X1 (MONTH YEARJune 2010). It originally appeared

online at http://www.ifosslr.org.

This article should be cited as follows:

von Willebrand, Martin and Partanen, MikkoPekka (2010) 'Package Review as a Part
of Free and Open Source Software Compliance', International Free and Open Source

Software Law ReviewFOSS L. Rev., X2(X1), pp x39 – x
DOI: 10.5033/ifosslr.v2i1.37

Copyright © 2010 Martin von Willebrand and MikkoPekka Partanen.

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, attribution, sharealike CCBYSA.

This paragraph is part of the paper, and must be included when copying or modifying
the paper.

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume X2, Issue X1 (MONTH YEARJune 2010). It originally appeared

online at http://www.ifosslr.org.

This article should be cited as follows:

von Willebrand, Martin and Partanen, MikkoPekka (2010) 'Package Review as a Part
of Free and Open Source Software Compliance', International Free and Open Source

Software Law ReviewFOSS L. Rev., X2(X1), pp x39 – x
DOI: 10.5033/ifosslr.v2i1.37

Copyright © 2010 Martin von Willebrand and MikkoPekka Partanen.

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, attribution, sharealike CCBYSA.

This paragraph is part of the paper, and must be included when copying or modifying
the paper.

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume X2, Issue X1 (MONTH YEARJune 2010). It originally appeared

online at http://www.ifosslr.org.

This article should be cited as follows:

von Willebrand, Martin and Partanen, MikkoPekka (2010) 'Package Review as a Part
of Free and Open Source Software Compliance', International Free and Open Source

Software Law ReviewFOSS L. Rev., X2(X1), pp x39 – x
DOI: 10.5033/ifosslr.v2i1.37

Copyright © 2010 Martin von Willebrand and MikkoPekka Partanen.

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, attribution, sharealike CCBYSA.

This paragraph is part of the paper, and must be included when copying or modifying
the paper.

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 2, Issue 1 (June 2010). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

von Willebrand, Martin and Partanen, MikkoPekka (2010) 'Package Review as a Part
of Free and Open Source Software Compliance', IFOSS L. Rev., 2(1), pp 39 – 60

DOI: 10.5033/ifosslr.v2i1.37

Copyright © 2010 Martin von Willebrand and MikkoPekka Partanen.

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, attribution, sharealike CCBYSA.

This paragraph is part of the paper, and must be included when copying or modifying
the paper.

http://dx.doi.org/10.5033/ifosslr.v2i1.37

